Exploratory Test Design

DevCon 2011-09-14

Rikard Edgren
TIBCO Spotfire

rikard.edgren@thetesteye.com

This work is licensed under the Creative Commons Attribution-No Derivative License

This presentation is about how to design tests in an exploratory fashion; aiming to learn more,
without stifling execution freedom.

It contains a sub-set of test design heuristics, my current favorites.

Version 1.0

“Exploratory software testing is a style of software testing that
emphasizes the personal freedom and responsibility of the
individual tester to continually optimize the value of her work by
treating test-related learning, test design, test execution, and test
result interpretation as mutually supportive activities that run in
parallel throughout the project.”

[Cem Kaner]
Why is this good?
at start we don’t know everything important

we want to know more
we will design tests and learn as we go

This presentation is about designing tests for this reality, where we don’t know exactly what we are
looking for.

Everything

The software potato:

The square symbolizes the features and bugs you will find with test cases stemming from
requirements (that can’t and shouldn’t be complete)

The blue area is every possible usage, including things that maybe no customers would consider a
problem.

The brown area is what is important, there lies those problems you’d want to find and fix.

This problem has been solved many times at many places with many different approaches.

What is common could be that testers learn a lot of things from many different sources, combine
things, look at many places, think critically and design tests (in advance or on-the-fly) that will cover
the important areas.

Some part luck, and a large portion of hard work is needed. Serendipity is working to our
advantage.

Recently | realized there can be more than one potato, that are three-dimensional and perhaps
slippery; there might be small potatoes that are the best of them’all...

Agenda

1. Test Execution
— Quicktests

2. Test Design
— Quality Characteristics

3. Test Analysis
— Sources for Test Ideas

In medias res...

You design tests all the time.
These activities are sometimes separated, but often intertwined.

Test Execution

* Benevolent start

* Be ready for serendipity
e Variations

* Do one more thing

* Background complexity
* Method acting

* Fresh eyes find failure

* Follow the scent

* Dogfooding

Start nice and easy with big chunks, so you find major, major problems at once. Try to do what is
intended, before intentionally trying to break it.

At all times, be ready to find valuable things you didn’t know you were looking for.

Make Variations all the time, broaden your usage with different data, different paths, so you'll see
and learn more.

Whatever test you do, add one more thing, something fast, popular, or error-prone. You might find
something important, or learn something.

If you use unnecessarily complex data, you might stumble on important issue. Don’t worry that it
will be difficult to pinpoint issues, that’s better than not knowing about them at all.

Try to be a user, try to mimic their needs, feelings, data and environments.

Look at new things, let others look at your things: fresh eyes find failure

When you notice something odd or strange, investigate at once, or let it rest until you get more
clues.

If you can use the software for real, you’ll get a better understanding of what and how it should
behave. If you’re confident of your product, call this “sip our own champagne”.

Quicktests

* Continuous Use — leave things over weekend

* Interference —remove, rename, cancel, swap, null
* Data Relationships

* Error-Prone Machine

* Coverage For Free

* Use checklists, your own or
— Hendrickson, Test Heuristics Cheat Sheet
— Hunter, You Are Not Done Yet
— Bach, SFDPOT, HICCUPPSF, CIDTESTD, FDSFSCURA

Hendricksson, Test Heuristics Cheat Sheet, http://testobsessed.com/wp-
content/uploads/2007/02/testheuristicscheatsheetvl.pdf

Hunter, You Are Not Done Yet,
http://www.thebraidytester.com/downloads/YouAreNotDoneYet.pdf

Bach/Bolton, Rapid Software Testing course, samt http://www.satisfice.com/blog/wp-
content/uploads/2009/10/et-dynamics22.pdf

Test Design

* Don’t necessarily think in terms of Pass/Fail
* ALAP — leave details to execution

* No Flourishes
— Write simple, so many can review
— See how far you can get with simple tests

¢ Diverse Half-measures

* Ongoing Test Ideas — notice quality violations

Diverse Half-Measures — “it’s better to do more different kinds of testing to a pretty good level,
than to do one or two kinds of testing perfectly.” Lesson 283 i Cem Kaner, James Bach, Bret
Pettichord, Lessons Learned in Software Testing

Ongoing test ideas are used by most manual testers, but seldom talked about.
For example, you’ll notice and communicate if a dialog takes 15 seconds to display. (Performance)
You'll get annoyed if something is overly cumbersome to do (Usability, Operability)

You can improve this skill by learning more about Quality Characteristics, and which matters in your
context.

Accuracy B
Efficiency Stability
HH Interoperability Recovery
e Ca Pa bil Itv Extensibility Data Integrity
Trustworthiness
L REIIa bllltv Learnability .
Operability ;Jr:-q;lentfess
HH Int tivit atisfaction
o U Sa b I I |ty goi;?sie“r’]lc:; Attractiveness
. Accessibility Ent.ra ncement
= Charlsma Documentation Attitude
® Secu rit Authentication .
y Authorization CapaCIty.
secrecy Res;-)on-s!veness
i Performance Invulnerability atllolillle)
Compli Throughput
ore pliance
e |T-bility
System Requirements Hardware Comp.
L] ibili Configuration Backward Comp.
Compatibility Configur Backuard
Uninstallation Application Comp.
Maintainability Resource Usage
Standards Conformance

Quality attributes are important for all products, not all of them, but many of them.

Capability is the functionality, probably covered in other ways; but interoperabilities are difficult.
Reliability is about handling many situations, and recover from errors.

Usability is also the efficiency you as a tester want to have the 100th time you’re using the product.
Light Accessibility Testing is very cheap.

Charisma is important, but seldom tested; does the product have ”it”?
Security might seem difficult, but some basics for your specific product you already know.
Performance is both on large-scale, but also for each function and environment.

Installability, Upgrade and Uninstallation; but also that customer IT department can support and
maintain the system and its artefacts.

Compatibility with hardware, operating system, software, previous versions, and standards.

Software Quality Characteristics
el po by

Capability. Can the product perform valuable functions?
3 y end dlabl

Charlsma. Does the product have it"'

niq

sam;nmon Bone does it fel ate using the product

purpose?
Amcvma mnm«mumm good-looking™?

5 Bave fuz, in a flow, P

- Hype: P 2

- you didn't know you had.

- Amitude: A d style?
- Directness: are (first) impressions impressive?

Story: usage”

Security. Does the product protect against unwanted usage?
- Authentication: the products identifications of the users.

nd &
- Privecy:
- Security
- Secrecy: the ability fo:

- i fee. prodct will ot trspor vies. o ppear 43 ne

qu&mm uwmnmmmuammwmummwm

Performante ls the product fast enough?
ﬁp-my

product,

&Mo‘ ich B0 red a3) performed.
f be.

- Throughput: things.

- onuser.
- Scalability: how well does the product scale up, out or down?

- Accuracy: any outpu in
- Efficiency: r v
y d the same P
2 formats
-t add
Rellabillty Cnn you trust the produtt in mmly and difficult situations?
- Stabilicy.
gracefully.
s possibl after atatal
~Resource fate usag resources.
- Data Integrity: P!
- Safety: the pi
ally bad happens?
Usabmry Is the product easy to use?
- Affordance
3 itiseasy nd %
- Minimalism:
B you have ¥ forgeti.
- bl Y Systematic iser
- Operability: Y
5 states and UL or APT).
- Clarity. andin detail. with for doubx?
- Errors: there are int pair
- Tailk ¢ specifie Y.
- Accessibily: possil y a3 poszible, xnd meets applicable accessibility standards.
here

IT-bility. Is the product easy to install, maintain and support?
- Syseem

product can be jed

- Upgy nd
nd resources
y3 or place s usage

- Deployabilcy: product can be rolled-out by IT

(restricted)
support for customers?

- Testabilty:
Compatibility. How well does the produtt interact with software and environments?

s - behavio
- Application Companibilizy: the product. and its data. works
roduct’s ith any
P able: £
switch-offs, support work from bome.

- Standards

Internal Software Quality characterlsncs

Supportability. Can customers’ usage and pmblens be suppama"
mnqﬁn: parts of the

rmamm»k i3 it easy to pinpoint errors (e, log files) and get help?

leﬂw .4
Testability. Is it easy to check and rtst the pmdutt’
- Traceabiliy:

- solateabilsy. abilty o test 4 part by itseit.
- ability

hints

©: chang,
p public or hi 5 beused?
or . abilty for te:

validated

Mainmnabillty Can the product be mamtmned and extended at low cost?

barnﬂbl-‘l!y mnnbcusywmhmmmmnm.m

sign. execution and evaluation.

kammv the code is
¥

- Y
Portability. Is transferring of the product to different environments enabled?
Reusability: can par

5 to change

¥y P

thetesteye.com v1.0.1

L 15091261,

Quality characteristics describe attributes that most software benefit from. They can be used on

the whole product or for details.

The whole is made by the details. The quality of a detail is defined by the whole.

This is a thorough extension in the same spirit as Bach’s CRUSSPIC STMPL.

Version 1.0 available at

http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf

Test Analysis

* |t's about finding out what is important
* Exploratory Test Design looks anywhere

* Mary Had a Little Lamb Heuristic
e Change granularity

* Question everything, especially this statement

e There are many information sources...

Mary had a little lamb” heuristic — accentuate different words, change to synonyms or antonyms.
Add "unless”, or ”...but without”

Change granularity — different levels of details give new perspectives

10

Sources for Test Ideas

Capabilities

Failure Modes

Quality Characteristics
Usage Scenarios
Creative Ideas

Models

Data

Surroundings
White-box

10. Public Collections

e e B LR SR B

Sabourin’s 10 Sources for Testing Ideas

Each item promotes a way of thinking that can give you good test ideas.

Some of these might not render any test ideas, but they can be very important to have in the back
of your head.

The information sources are most useful when they are combined.

11

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

More Sources for Test Ideas

Internal Collections
Business Objectives
Information Objectives
Product Image
Product Fears
Project Risks
Rumors

Product History

Test Artifacts

Debt

Business Knowledge
Field Information

23.
24,
25.
26.
27.
28.
29.
30.
31.
32
33.
34,

Users
Conversations
Actual Software
Technologies
Standards
References
Competitors
Tools

Context Analysis
Legal Aspects
Many Deliverables
YOUu!

thetesteye.com, work in progress

What I’'m trying to tell you is that in order to do great testing, you must understand what is
important, and you do that from a variety of information sources.

Never stop looking and learning.

This list will be released as a poster at

http://thetesteye.com/posters/TheTestEye_SourcesforTestldeas.pdf

12

Everything

The potato is now filled with content from diverse sources.

13

Finale

Drawbacks?

— Difficult to stop

— Requires trusting testers

— Questioned by old-fashioned reviewers

You have to find YOUR best ways

Do your best, collaborate, learn to understand
what is important

http://thetesteye.com/blog

It is better to stop on purpose, than because you didn’t have any ideas.

If you don't trust testers, train them, so you can.

| believe that in 10 years a medical audit might render questions like ”So are you really saying you

don’t do any exploratory testing to find out things you couldn’t predict??”

And there are no rules, and the few there are, you should sometimes break.

14

Questions

o P77

* Further reading:
— Exploratory Testing Dynamics (Bach, Bach, Bolton)

— Styles of Exploration (Kaner, Johnson)

— BBST Exploratory Testing (Kaner, Bach)
— The Little Black Book on Test Design (Edgren)

Exploratory Testing Dynamics: http://www.satisfice.com/blog/wp-content/uploads/2009/10/et-
dynamics22.pdf

Styles of Exploration:
http://www.testingeducation.org/BBST/testdesign/KanerJohnson_LAWST7StylesOfExploration.pdf

BBST Exploratory Testing: http://www.testingeducation.org/BBST/exploratory/BBSTExploring.pdf

The Little Black Book on Test Design:
http://www.thetesteye.com/papers/ThelittleBlackBookOnTestDesign.pdf

15

