CURINGWOUR BiNARY DiSEASE

QOED FESTiNGI TS ABOUT iNVESTiQAKAWR. ERGRANRE/SHERAKEG

The introduction film was made three years ago, and it isn’t about the future, it is about now.

The industry believes testing is supposed to be about binary verification of stories, requirements,
examples et.al.

| wrote this abstract for EuroSTAR 2011 and felt extremely pleased.
I had something new and important to say, but it wasn’t accepted.
So it became a lightning talk at SWET2, and a blog post, without an impact, as far as | know.

Finally I got to present it here in Malmd, maybe things will start happening now...

I might be very wrong, but | know I’'m not.
You might be ill, and | might cure you.

What's important?

tools-to-theories ¢ 1. Background Selt hel 1o L iberation

Curing Our Noteworthy Information

Pass/Fail addiction

Binary Disease

Coverage Obsession

4. Going Forward

Metrics Tumor

Sick Test Techniques

My main message is that if you let go of these crippling computeresque ideas, you have time to
focus on what is important.

You might think I’'m attacking you, and you might think this has nothing to do with you.

Either way, think about your thinking, think about others thinking, and decide if there is a need for
change or not.

It was a very strong feeling when | read Gigerenzer’s tools-to-theories (I found it via Gut Feelings)

A lot of the testing theory have felt wrong, and know | could explain why.

This theory doesn’t automatically mean that all testing theories are bad and useless, but my
intuition says it is more than a risk.

Have you ever seen a test case management systems without mandatory Pass/Fail?
Why do people do all of this pass/fail and metrics on it? Because that's the way you do it.

If we know everything in advance, then Pass/Fail might be OK.

But we never know everything in advance.

You can ask richer questions than is this correct or not? You can learn things, and grow as tester.

Have you ever seen a test case management systems without mandatory Pass/Fail?

Cov

50% coverage car

* we have found so many serious bugs th
* we are running late because testers insi
aren’t explic
~ *we have run tt
on schedule

“we have run th
- from the“'
“we have r

~ what @’]
“ W

At a few occasions | have had the chance to have “the talk” with testers | respect that advocate
metrics.

It boils down to the same essence, you need A LOT of context for the numbers to be valid.

So much context, that | believe you could throw away the numbers and just keep the text.

SiCK TEST DESIGN TECHNIQUES

The techniques that usually are taught are old,
they are based in computer science and
ideas about everything being known in advance

THE LITTLE
BLACK BOOK
ONTEST DESIGN

They disregard what is common, error-prone,
popular, risky, changed...

They don’t capture what is important

I wrote a little book about test design that have received 5.000 hits in two months.

When someone challenges authorities, you should ask: “say you’re right, what can you do with this
knowledge?”

10

Everything

The software potato:

The square symbolizes the features and bugs you will find with test cases stemming from
requirements (that can’t and shouldn’t be complete)

The blue area is every possible usage, including things that maybe no customers would consider a
problem.

The brown area is what is important, there lies those problems you’d want to find and fix.

This problem has been solved many times at many places with many different approaches.

What is common could be that testers learn a lot of things from many different sources, combine
things, look at many places, think critically and design tests (in advance or on-the-fly) that will cover
the important areas.

Some part luck, and a large portion of hard work is needed. Serendipity is working to our
advantage.

Recently | realized there can be more than one potato, that are three-dimensional and perhaps
slippery; there might be small potatoes that are the best of them’all...

11

Everything

The potato is now filled with content from diverse sources.
This can be how the software world looks like for free testers.

12

We can investigate software as humans, make subjective judgments and handle the
inevitable unknown.

We don’t have to look at things in binary ways, since that’s not what reality is.

13

Liberation of our thinking.

If you don’t trust testers, train them, so you can.

14

The purpose of testing isn’t to make it easy to create fancy reports,
it is to communicate important information.

you need knowledge about details, and the ability to summarize and explain in a variety of
manners.

you need to know the software details, because then you can say better things

If communicating the essence is too difficult, maybe there are other large-scale problems, and the
project should be split in more manageable pieces.

15

16

Software Quality Characteristics

¥

Capability. Can the product perform valuable functions?

¥

IT-bility. Is the product easy to install, maintain and support?
- Syseem ability

- Aceuracy: any output or ind secti
&7 it D) all nd
abiy i run at the same t processes. Koz 73 or plac usage?
- Extensibilicy: for e ‘ St e
- o y ¥
Reliability. Can you trust the product in many and difficult situations? Compatibility. How well does the product interact with software and environments?
- Seability: s or s . a @ used
3 itis possible after a fatal nd its dat; . y
:z:m"z’ appeopeiate wtage of siamory, Siopagh a1 othd reieom: - Configuration Compatibiliy: product s abiiy to blend in with any configurations of the environment.
- Safecy. the p g ol . o e
5 ‘happens’ switch-offs, from hom
5 pradicianie - Standards Conformance: -
Usability. Is the product easy to use?
) i » Internal Software Quality Characteristics
. but equally
re pr Supportability. Can customers’ usage and problems be supported?
s 4 - Identifiers: is i i part versions,
¥
- Operabilicy: y log flez)
& oL er APT): gHIng: ’

- Clarity: explicitly and in detad, with ey for doube? - Versatilicy: ability
- Emors: pair Testability. Is it easy to check and test the product?

. i & feel i 5 # g

pect Y- ¥ y
¥ jsdle. and applicable - Isolateability. ability to test a part by itsel.
a ad ity betested
Charisma. Does the product have “it”? z < o
- Uniqueness t and Aisuntion: iy i beused?
 Satifaction: how does it feel fter using the product? " Tiirmacion: sy it
5 areall of. ep “good-looking? hagic Maintainability. Can the product be maintained and extended at low cost?
dowith E ired
ce have fun, in 4 fiow, ngage e pr -m;mmnm;omnaummnmmv
' you bad. :m;b:{vvm»au
- Asticude: dstyle? 3
- Directness: ave (first) impressions impressive? s splt pies
- Story: are the are.
Security. Does the product protect against unwanted usage? iy .
i Portability. Is transferring of the product to different environments enabled?

st and d¢ - Reusability: can parts of the product be re-used elsewhere?
¢ y to change
- Secrecy: the ability y P
- Virus-free: product will not transpOFt Virus, of APpear 43 one.

r : b

gally copy
Perfc . Is the product, h?
3 orn:nce, /s the p fast enoug) - - & P—
. s be. 150 9126-1,

- Throughput: things.

Discuss with stakeholders which characteristics that are most relevent in your situation.

Let all testers have these in the back of their head.

17

18

Gigerenzer: Adaptive Thinking.

Kaner: Software Testing is a Social Science,
http://www.kaner.com/pdfs/KanerSocialScienceTASSQ.pdf

Edgren: The Little Black Book on Test Design:
http://www.thetesteye.com/papers/ThelittleBlackBookOnTestDesign.pdf

19

